# Deep neural networks in a nutshell

# Many inventions were inspired by the Nature









# Incredibly poor analogy from biological point of view

It doesn't matter how you come up with the idea, but its utility is the only thing that matters.

### NN Tasks and Utility

- Classification
- Classification with missing inputs
- Segmentation
- Regression (predict a numerical value given some input)
- Transcription (observe a relatively unstructured representation of some kind of data and transcribe it into discrete, textual form)
- Machine translation
- Structured output (e.g. sentence to its grammar tree)
- Anomaly detection
- Synthesis and sampling
- Imputation of missing values
- Denoising
- Density estimation or probability mass function estimation
- And many-many more.....



### Classification is simple? Think once more.



#### Google uses NN for translation

#### 

| DETECT LANGUAGE | RUSSIAN | ENGLISH | GERMAN | ~      | + | UKRAI        | NIAN RUSSIAN ENGLISH 🗸                            |       |     |
|-----------------|---------|---------|--------|--------|---|--------------|---------------------------------------------------|-------|-----|
| Hello           |         |         |        |        | × | Здрас        | стуйте ⊘                                          |       |     |
|                 |         |         |        |        |   | Zdrastuyt    | e                                                 |       |     |
| •               |         |         |        | 5/5000 | • | •            |                                                   | Ø     |     |
|                 |         |         |        |        |   | Translatic   | ons of Hello!                                     |       |     |
|                 |         |         |        |        |   | Interjection | n                                                 | Frequ | end |
|                 |         |         |        |        |   | Алло!        | Hello!, Hallo!, Halloa!, Hullo!, Hulloa!          |       | -   |
|                 |         |         |        |        |   | Ало!         | Hello!                                            |       |     |
|                 |         |         |        |        |   | Вітаю!       | Congratulations!, Hello!                          |       |     |
|                 |         |         |        |        |   | Привіт!      | Greetings!, Hello!, Hi!, Hallo!, Ave!, Chin-Chin! |       | 1   |

Send feedback





| self, olc.              | dynamic               | ground            | road             | sidewalk   |
|-------------------------|-----------------------|-------------------|------------------|------------|
| parking                 | rail track            | building          | wall             | fence      |
| guard rail              | bridge                | tunnel            | pole             | polegroup  |
|                         |                       |                   |                  | 1          |
| traffic light           | traffic sign          | vegetation        | terrain          | sky        |
| traffic light<br>person | traffic sign<br>rider | vegetation<br>car | terrain<br>truck | sky<br>bus |





#### Real noisy photos

#### Input



#### Output

















| Caption                                                                      | Generated Images |
|------------------------------------------------------------------------------|------------------|
| the flower shown has yellow anther red pistil and bright red petals          |                  |
| this flower has petals that are yellow, white and purple and has dark lines  |                  |
| the petals on this flower are white with a yellow center                     |                  |
| this flower has a lot of small round pink petals.                            |                  |
| this flower is orange in color, and has petals that are ruffled and rounded. |                  |
| the flower has yellow petals and the center of it is brown                   |                  |



#### What is a neural network?

### Single Neuron



#### Activation functions



Leaky ReLU 
$$\max(0.1x, x)$$



 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$ 





input layer

hidden layer 1

hidden layer 2

output layer



### Functionally, neural network is a gargantuan interpolator-approximator with millions internal parameters

Example: AlexNet, 62,378,344 parameters

### Where do we get the points to approximate?

# Three ways (maybe, you'll be the one to invent more)

- We define the desired output ourselves Supervised learning (classification, etc.)
- We cannot define the desired output, but we can tell how bad is the given output – Unsupervised learning (clustering, etc.)
- We allow NN to interact with the environment and assess the consequences – Reinforcement learning (play Atari game, etc.)

# How do we know, neural network does its job good?

## How do we know, it does what we want?

### Cost Function also known as Loss Function



How to formalize that two rectangles match?

### What is supposed to be "good"?













### Now you have ground-truth



### Which detect is better?

### Where do we get internal parameters?

#### We train neural network

How do we train neural network?

### Methodological point of view

- Supervised learning (classification, etc.)
- Unsupervised learning (clustering, etc.)
- Reinforcement learning (play Atari game, etc.)

### Implementation point of view

Loss function, the formalization of how good NN performs, should be minimized (we could define "gain" function and maximize it)

What minimization methods do we know? What is the suitable one?

# Parameters... Parameters everywhere...



#### Curse of dimensions

Function of millions of arguments...

How do we minimize it?

What properties can we rely on? (global or local)

# We can rely on local properties only due to curse of dimensions

### So neural network is just a function

 $f_{\alpha_1,\alpha_2,\ldots,\alpha_n}(x_1,x_2,\ldots,x_m)$
We can rely on local properties only due to curse of dimensions

# So neural network is just a function

 $f_{\alpha_1,\alpha_2,\ldots,\alpha_n}(x_1,x_2,\ldots,x_m)$ 

# It is philosophical question what to consider parameters and what should be arguments

 $f(\alpha_1, \alpha_2, \ldots, \alpha_n; x_1, x_2, \ldots, x_m)$ 









#### $\Delta x$ and $\Delta y$ not equal in general!



Red lines we assume to be parallel

$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \frac{\partial f}{\partial \alpha_1} \Delta \alpha_1 + \frac{\partial f}{\partial \alpha_2} \Delta \alpha_2 + \dots + \frac{\partial f}{\partial \alpha_n} \Delta \alpha_n$$

$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \frac{\partial f}{\partial \alpha_1} \Delta \alpha_1 + \frac{\partial f}{\partial \alpha_2} \Delta \alpha_2 + \dots + \frac{\partial f}{\partial \alpha_n} \Delta \alpha_n$$
**Do a trick**

$$(a_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \frac{\partial f}{\partial \alpha_1} \Delta \alpha_1 + \frac{\partial f}{\partial \alpha_2} \Delta \alpha_2 + \dots + \frac{\partial f}{\partial \alpha_n} \Delta \alpha_n$$

$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \left\{ \frac{\partial f}{\partial \alpha_1}; \frac{\partial f}{\partial \alpha_2}; \dots; \frac{\partial f}{\partial \alpha_n} \right\} \cdot \overline{\left\{ \Delta \alpha_1; \Delta \alpha_2; \dots; \Delta \alpha_n \right\}} = \vec{\nabla}_{\alpha} f \cdot \vec{\Delta}_{\alpha}$$

$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \frac{\partial f}{\partial \alpha_1} \Delta \alpha_1 + \frac{\partial f}{\partial \alpha_2} \Delta \alpha_2 + \dots + \frac{\partial f}{\partial \alpha_n} \Delta \alpha_n$$
  
**DO a trick**
$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \overline{\left\{\frac{\partial f}{\partial \alpha_1}; \frac{\partial f}{\partial \alpha_2}; \dots; \frac{\partial f}{\partial \alpha_n}\right\}} \cdot \overline{\left\{\Delta \alpha_1; \Delta \alpha_2; \dots; \Delta \alpha_n\right\}} = \vec{\nabla}_{\alpha} f \cdot \vec{\Delta}_{\alpha}$$
  
$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = |\vec{\nabla}_{\alpha} f| \quad |\vec{\Delta}_{\alpha}| \cos(\varphi)$$

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = \frac{\partial f}{\partial \alpha_{1}} \Delta \alpha_{1} + \frac{\partial f}{\partial \alpha_{2}} \Delta \alpha_{2} + \dots + \frac{\partial f}{\partial \alpha_{n}} \Delta \alpha_{n}$$

$$Do \ a \ trick$$

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = \overline{\left\{\frac{\partial f}{\partial \alpha_{1}}; \frac{\partial f}{\partial \alpha_{2}}; \dots; \frac{\partial f}{\partial \alpha_{n}}\right\}} \cdot \overline{\left\{\Delta \alpha_{1}; \Delta \alpha_{2}; \dots; \Delta \alpha_{n}\right\}} = \vec{\nabla}_{\alpha} f \cdot \vec{\Delta}_{\alpha}$$

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = |\vec{\nabla}_{\alpha} f| \underbrace{|\vec{\Delta}_{\alpha}| \cos(\varphi)}_{\lambda}$$
How to make our function minimal?

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = \frac{\partial f}{\partial \alpha_{1}} \Delta \alpha_{1} + \frac{\partial f}{\partial \alpha_{2}} \Delta \alpha_{2} + \dots + \frac{\partial f}{\partial \alpha_{n}} \Delta \alpha_{n}$$

$$DO \ a \ trick$$

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = \overline{\left\{\frac{\partial f}{\partial \alpha_{1}}; \frac{\partial f}{\partial \alpha_{2}}; \dots; \frac{\partial f}{\partial \alpha_{n}}\right\}} \cdot \overline{\left\{\Delta \alpha_{1}; \Delta \alpha_{2}; \dots; \Delta \alpha_{n}\right\}} = \overline{\nabla}_{\alpha} f \cdot \overline{\Delta}_{\alpha}$$

$$\Delta f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}; x_{1}, x_{2}, \dots, x_{m}) = |\overline{\nabla}_{\alpha} f| \underbrace{|\vec{\Delta}_{\alpha}| \cos(\varphi)}_{\lambda}$$
How to make our function minimal?
$$\cos(\varphi) = -1; \qquad \lambda > 0$$

$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \frac{\partial f}{\partial \alpha_1} \Delta \alpha_1 + \frac{\partial f}{\partial \alpha_2} \Delta \alpha_2 + \dots + \frac{\partial f}{\partial \alpha_n} \Delta \alpha_n$$
$$Do \ a \ trick$$
$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = \overline{\left\{\frac{\partial f}{\partial \alpha_1}; \frac{\partial f}{\partial \alpha_2}; \dots; \frac{\partial f}{\partial \alpha_n}\right\}} \cdot \overline{\left\{\Delta \alpha_1; \Delta \alpha_2; \dots; \Delta \alpha_n\right\}} = \vec{\nabla}_{\alpha} f \cdot \vec{\Delta}_{\alpha}$$
$$\Delta f(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m) = |\vec{\nabla}_{\alpha} f| \quad |\vec{\Delta}_{\alpha}| \cos(\varphi)$$

# How to make our function $\dot{m}$ inimal?

 $\cos(\varphi) = -1; \quad \lambda > 0$ Here comes the idea of gradient descent

$$\vec{x}^{(n+1)} = \vec{x}^{(n)} - \lambda \, \vec{\nabla}_{\alpha} f \, (\vec{x}^{(n)})$$

### Gradient descent



#### Gradient descent



# Modifications of gradient descent

- Momentum optimization
- Nesterov Momentum optimization
- AdaGrad
- RMSProp
- Adam optimization
- Learning rate scheduling

But I can't write NN as a single function (well... I can but it will take forever)

# How do I find gradient?

## Backpropagation

# Backpropagation is based on the chain rule

 $\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) =$ 



 $\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) =$ 

I want change of the loss function dependent on all network's parameters



 $\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) =$ 





$$\begin{split} \Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) &= \\ \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \\ &+ \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \end{split}$$









$$\begin{split} \Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) &= \\ \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \\ &+ \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \end{split}$$





$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$



$$\begin{aligned} \Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) &= \\ \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ + \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{aligned}$$



$$\begin{aligned} \Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) &= \\ \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ + \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \Delta b - \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{aligned}$$



$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b}\right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$



$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b}\right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$



$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b}\right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$

$$\begin{array}{c} I_1 \\ & \Delta a = \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \frac{\partial a}{\partial u_1} \Delta u_1 + \frac{\partial f}{\partial x} \frac{\partial a}{\partial a} \frac{\partial a}{\partial u_2} \Delta u_2 + \\ & + \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \frac{\partial a}{\partial I_1} \Delta I_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \frac{\partial a}{\partial I_2} \Delta I_2 \end{array}$$

$$\begin{array}{c}
I_{5} \\
\hline I_{6} \\
\hline I_{5} \\
\hline I_{6} \\$$

$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b}\right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$





$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ &+ \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b}\right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$






Note: all derivatives are meant to be calculated at a certain point – they are numbers!

$$\begin{split} \Delta f & \Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ & \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \\ & + \frac{\partial f}{\partial x} \frac{\partial x}{\partial a} \Delta a + + \left( \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \right) \Delta b + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \Delta c \end{split}$$



#### Now small variation of cost function is written in form it depends on internal parameters only

$$\begin{split} &\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ &\frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v_4} \Delta v_4 + \frac{\partial f}{\partial x} \frac{\partial a}{\partial u_1} \Delta u_1 + \frac{\partial f}{\partial x} \frac{\partial a}{\partial u_2} \Delta u_2 + \\ &+ \left( \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \right) \frac{\partial b}{\partial u_3} \Delta u_3 + \left( \frac{\partial f}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial b} \right) \frac{\partial b}{\partial u_4} \Delta u_4 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \frac{\partial c}{\partial u_5} \Delta u_5 + \frac{\partial f}{\partial y} \frac{\partial y}{\partial c} \frac{\partial c}{\partial u_6} \Delta u_6 \end{split}$$

# Now we have all numbers needed to make the gradient descent step!

$$\Delta f(\Delta u_1, \Delta u_2, \Delta u_3, \Delta u_4, \Delta u_5, \Delta u_6, \Delta v_1, \Delta v_2, \Delta v_3, \Delta v_4, \Delta w_1, \Delta w_2) = \\ \frac{\partial f}{\partial w_1} \Delta w_1 + \frac{\partial f}{\partial w_2} \Delta w_2 + \frac{\partial f}{\partial v_1} \Delta v_1 + \frac{\partial f}{\partial v_2} \Delta v_2 + \frac{\partial f}{\partial v_3} \Delta v_3 + \frac{\partial f}{\partial v_4} \Delta v_4 + \frac{\partial f}{\partial u_1} \Delta u_1 + \frac{\partial f}{\partial u_2} \Delta u_2 + \frac{\partial f}{\partial u_3} \Delta u_3 + \frac{\partial f}{\partial u_4} \Delta u_4 + \frac{\partial f}{\partial u_5} \Delta u_5 + \frac{\partial f}{\partial u_6} \Delta u_6 + \frac{\partial f}{\partial u_6} + \frac{\partial f}{\partial u_6}$$

# Example



#### Remove unnecessary derivatives





# Initialize parameters



### Possible issues with deep networks

# Single Neuron



#### Activation functions



Leaky ReLU 
$$\max(0.1x, x)$$



 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$ 



# Vanishing/exploding gradients problems

- Xavier and He initialization
- Non-saturating activation functions
- Batch Normalization
- Gradient clipping





# Fitting problems



# Avoid overfitting

- Early Stopping
- L1 and L2 regularization
- Dropout
- Max-norm regularization
- Data augmentation





#### **Convolution operation**

# Convolution



Two basic ideas:

- geometrical proximity has significant meaning
- translational invariance



| w1[  | :,: | ,0]         |
|------|-----|-------------|
| -1   | 0   | 1           |
| -1   | 1   | 1           |
| -1   | -1  | 0           |
| w1[  | :,: | ,1]         |
| -1   | -1  | 1           |
| -1   | -1  | -1          |
| -1   | 1   | 1           |
| w1[  | :,: | ,2]         |
| 0    | 0   | 1           |
| -1   | 0   | -1          |
| -1   | 0   | 0           |
| Dias | hl  | (1 v 1 v 1) |

| 0[:          | ,÷,                 | 0]             |
|--------------|---------------------|----------------|
| -2           | -4                  | -1             |
| 0            | -1                  | -1             |
| -1           | 0                   | 1              |
| 10           |                     | 11             |
| U.           | <i>'</i> • <i>'</i> | τ1             |
| 3            | -3                  | <u>-6</u>      |
| 3<br>-2      | -3<br>-4            | -6<br>-9       |
| 3<br>-2<br>5 | -3<br>-4<br>-4      | -6<br>-9<br>-7 |

Bias b1 (1x1x1) b1[:,:,0] 0

toggle movement



| :,:       | ,0]                                                              |  |  |
|-----------|------------------------------------------------------------------|--|--|
| 0         | 1                                                                |  |  |
| 1         | 1                                                                |  |  |
| -1        | 0                                                                |  |  |
| :,:       | ,1]                                                              |  |  |
| -1        | 1                                                                |  |  |
| -1        | -1                                                               |  |  |
| 1         | 1                                                                |  |  |
| w1[:,:,2] |                                                                  |  |  |
| 0         | 1                                                                |  |  |
| 0         | -1                                                               |  |  |
| 0         | 0                                                                |  |  |
|           | :,:<br>0<br>-1<br>-1<br>-1<br>-1<br>1<br>:,:<br>0<br>0<br>0<br>0 |  |  |

| 0[:            | ,:,       | 0]             |
|----------------|-----------|----------------|
| -2             | -4        | -1             |
| 0              | -1        | -1             |
| -1             | 0         | 1              |
|                |           |                |
| 0[:            | ,:,       | 1]             |
| o[:<br>3       | ,:,<br>-3 | 1]<br>-6       |
| ∘[:<br>3<br>-2 | -3<br>-4  | 1]<br>-6<br>-9 |

Bias b1 (1x1x1) b1[:,:,0] 0

toggle movement


| w1[ | :,: | ,0] |
|-----|-----|-----|
| -1  | 0   | 1   |
| -1  | 1   | 1   |
| -1  | -1  | 0   |
| w1[ | :,: | ,1] |
| -1  | -1  | 1   |
| -1  | -1  | -1  |
| -1  | 1   | 1   |
| w1[ | :,: | ,2] |
| 0   | 0   | 1   |
| -1  | 0   | -1  |
| -1  | 0   | 0   |
| -1  | 0   | 0   |

toggle movement

0[:,:,0]

-2 -4 -1

0 -1 -1

-1 0 1

0[:,:,1]

3 -3 -6

-2 -4 -9

5 -4 -7







| w1[ | :,: | :,0] |
|-----|-----|------|
| -1  | 0   | 1    |
| -1  | 1   | 1    |
| -1  | -1  | 0    |
| w1[ | :,  | ,1]  |
| -1  | -1  | 1    |
| -1  | -1  | -1   |
| -1  | 1   | 1    |
| w1[ | :,  | ,2]  |
| 0   | 0   | 1    |
| -1  | 0   | -1   |
| -1  | 0   | 0    |
|     |     |      |

toggle movement

0[:,:,0]

-2 -4 -1

0 -1 -1

-1 0 1

o[:,:,1]

3 -3 -6

-2 -4 -9

5 -4 -7



| w1[ | :,: | ,0] |  |
|-----|-----|-----|--|
| -1  | 0   | 1   |  |
| -1  | 1   | 1   |  |
| -1  | -1  | 0   |  |
| w1[ | :,: | ,1] |  |
| -1  | -1  | 1   |  |
| -1  | -1  | -1  |  |
| -1  | 1   | 1   |  |
| w1[ | :,: | ,2] |  |
| 0   | 0   | 1   |  |
| -1  | 0   | -1  |  |
| -1  | 0   | 0   |  |
|     |     |     |  |

toggle movement

0[:,:,0]

-2 -4 -1

0 -1 -1

-1 0 1

0[:,:,1]

3 -3 -6

-2 -4 -9

5 -4 -7



| w1[:,:,0] |    |    |  |
|-----------|----|----|--|
| -1        | 0  | 1  |  |
| -1        | 1  | 1  |  |
| -1        | -1 | 0  |  |
| w1[:,:,1] |    |    |  |
| -1        | -1 | 1  |  |
| -1        | -1 | -1 |  |
| -1        | 1  | 1  |  |
| w1[:,:,2] |    |    |  |
| 0         | 0  | 1  |  |
| -1        | 0  | -1 |  |
| -1        | 0  | 0  |  |

toggle movement

0[:,:,0]

-2 -4 -1

-1 -1

0 1

-3 -6

0[:,:,1]

-2 -4 -9

5 -4 -7

0

-1

3



| w1[:,:,0] |    |    |  |  |
|-----------|----|----|--|--|
| -1        | 0  | 1  |  |  |
| -1        | 1  | 1  |  |  |
| -1        | -1 | 0  |  |  |
| w1[:,:,1] |    |    |  |  |
| -1        | -1 | 1  |  |  |
| -1        | -1 | -1 |  |  |
| -1        | 1  | 1  |  |  |
| w1[:,:,2] |    |    |  |  |
| 0         | 0  | 1  |  |  |
| -1        | 0  | -1 |  |  |
| -1        | 0  | 0  |  |  |
|           |    |    |  |  |

toggle movement

0[:,:,0]

-2 -4 -1

0 -1 -1

0[:,:,1]

3 -3 -6

-2 -4 -9

5 -4 -7

1

-1 0



















## Two famous deep NN architecture



## ResNet



